Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$ adalah... maka fungsi invers $g(p)$ adalah ...
1. Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$ adalah suatu fungsi sehingga $(gof)(p)=g(f(p))=2p+1$, maka fungsi invers $g(p)$ adalah ...
A. $\frac{p - 3}{p + 1}$
B. $\frac{p - 3}{p - 1}$
C. $\frac{p + 1}{p - 3}$
D. $\frac{p - 3}{1 - p}$
E. $\frac{p - 1}{3 - p}$
Jawaban :
Materi yang perlu kita ingat.
-------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------
- Jika $f(p)=\frac{ap+b}{cp+d}$ maka $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
- Jika $gof(p)=kp + c$ maka $g(p)=k(f^{-1} (p)) + c$, setiap nilai p pada hasil diganti dengan $f^{-1} (p)$.
$f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$ maka $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$
$gof(p)=2p+1$ maka $g(p)=2(\frac{1}{p+1}) + 1$
$g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
$g(p)=\frac{p+3}{p+1}$ maka $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
$g^{-1} (p)= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
$g^{-1} (p)= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
************************************************************************************************************
English
$f(p)=\frac{1 - p}{ p}$ for each real number $p \neq 0$. If $g : R \Rightarrow R$ is
a function so that $(gof)(p)=g(f(p))=2p+1$, then the inverse function $g(p)$ is ...
A. $\frac{p - 3}{p + 1}$
B. $\frac{p - 3}{p - 1}$
C. $\frac{p + 1}{p - 3}$
D. $\frac{p - 3}{1 - p}$
E. $\frac{p - 1}{3 - p}$
Answer
Remember this,
-------------------------------------------------------------------------------------------------------------------------
- if$f(p)=\frac{ap+b}{cp+d}$ then $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
- if $gof(p)=kp + c$ then $g(p)=k(f^{-1} (p)) + c$, each p value on the result is replaced by $f^{-1} (p)$.
$f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$ then $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$
$gof(p)=2p+1$ then $g(p)=2(\frac{1}{p+1}) + 1$
$g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
$g(p)=\frac{p+3}{p+1}$ then $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
$g^{-1}= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
$g^{-1}= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
so inverse $g(p)$ is $\frac{p-3}{1-p}$
PEMBAHASAN SOAL FUNGSI KOMPOSISI DAN INVERS TAHUN 2007 SBMPTN
Comments
Post a Comment