Skip to main content

Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$ adalah... maka fungsi invers $g(p)$ adalah ...



1.  Diketahui $f(p)=\frac{1 - p}{ p}$ untuk setiap bilangan real $p \neq 0$. Jika $g : R \Rightarrow R$  adalah suatu fungsi sehingga $(gof)(p)=g(f(p))=2p+1$, maka fungsi invers $g(p)$ adalah ...
      A.  $\frac{p - 3}{p + 1}$
      B.  $\frac{p - 3}{p - 1}$
      C.  $\frac{p + 1}{p - 3}$ 
      D.  $\frac{p - 3}{1 - p}$
      E.  $\frac{p - 1}{3 - p}$

Jawaban :  
      Materi yang perlu kita ingat.
           -------------------------------------------------------------------------------------------------------------------------
  • Jika $f(p)=\frac{ap+b}{cp+d}$ maka $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
  • Jika $gof(p)=kp + c$ maka $g(p)=k(f^{-1} (p)) + c$, setiap nilai p pada hasil diganti dengan $f^{-1} (p)$.
           ------------------------------------------------------------------------------------------------------------------------
       $f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$  maka $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$

       $gof(p)=2p+1$  maka $g(p)=2(\frac{1}{p+1}) + 1$
       $g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
       $g(p)=\frac{p+3}{p+1}$ maka $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
       $g^{-1} (p)= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$
      
       jadi invers $g(p)$ adalah $\frac{p-3}{1-p}$

Kembali ke SOAL? klik SOAL PART I
************************************************************************************************************
English 

    $f(p)=\frac{1 - p}{ p}$ for each real number $p \neq 0$. If $g : R \Rightarrow R$ is
     a function so that $(gof)(p)=g(f(p))=2p+1$, then the inverse function $g(p)$ is ...
      A.  $\frac{p - 3}{p + 1}$
      B.  $\frac{p - 3}{p - 1}$
      C.  $\frac{p + 1}{p - 3}$ 
      D.  $\frac{p - 3}{1 - p}$
      E.  $\frac{p - 1}{3 - p}$
     
      Answer
      Remember this,
  -------------------------------------------------------------------------------------------------------------------------
  • if$f(p)=\frac{ap+b}{cp+d}$ then $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
  • if $gof(p)=kp + c$ then $g(p)=k(f^{-1} (p)) + c$, each p value on the result is replaced by $f^{-1} (p)$.
           ------------------------------------------------------------------------------------------------------------------------
       $f(p)=\frac{1 - p}{p}=\frac{-p + 1}{p + 0}$  then $f^{-1} (p)=\frac{0p+1}{p+1} = \frac{1}{p+1}$

       $gof(p)=2p+1$  then $g(p)=2(\frac{1}{p+1}) + 1$
       $g(p)=\frac{2}{p+1} + 1(\frac{p+1}{p+1}) = \frac{p+3}{p+1}$
       $g(p)=\frac{p+3}{p+1}$ then $g^{-1} (p)=\frac{-p+3}{p-1} = \frac{p-3}{-p+1}$
       $g^{-1}= \frac{p-3}{-p+1} = \frac{p-3}{1-p}$

      so inverse $g(p)$ is $\frac{p-3}{1-p}$

PEMBAHASAN SOAL FUNGSI KOMPOSISI DAN INVERS TAHUN 2007   SBMPTN

Comments

Popular posts from this blog

SOAL AKM TRANSFORMASI MATRIKS

 1.   Tata mendapatkan tugas dari Yuliana untuk menentukan besaran translasi yang dilakukannya jika posisi awalnya dititik $(4,2)$ dan posisi akhirnya$(-1,-2)$  berapakah besaran translasinya? Jawab; Pososi Akhir = posisi awal + besaran translasi $\left(\begin{matrix}-1\\-2\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ $4+a=-1$ maka $a=-1-4=-5$ $2+b=-2$ maka $b=-2-2=-4$ jadi besaran translasinya $(-5,-4)$ 2.   Persamaan parabola $y=2x^2+6$ ditranslasikan oleh matriks $\left(\begin{matrix}1\\3\end{matrix}\right)$ akan mempunyai bayangan parabola dengan titik puncak …. Jawab; $\left(\begin{matrix}x'\\y'\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}1\\3\end{matrix}\right)$ $x+1=x'$ maka $x=x'-1$ .....(1) $y+3=y'$ maka $y=y'-3$ ....(2) substitusi (1) dan (2) ke $y=2^2+6$ menjadi $y'-3=2(x'-1)^2+6$ $y'-3=2(x'^2-2x'+1)+6$ $y'-3=2x'^2-4x'...

SOAL AKM MATRIKS

  7.   Jawab; a. BENAR B. Salah (seharusnya sama dengan g bukan h) C. Salah (seharusnya kotak silang bukan kotak dua) D. Salah E.  Salah 8.   Jawab; $A_{2\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan)  $B_{2\times 2} \times A_{2\times 2}$ karena banyak kolom B sama dengan banyak baris A (dapat dikalikan) $A_{2\times 2} \times C_{3\times 2}$ karena banyak kolom A tidak sama dengan banyak baris C (tida dapat dikalikan) $C_{3\times 2} \times A_{2\times 2}$ karena banyak kolom C sama dengan banyak baris A (dapat dikalikan) $B_{2\times 2} \times C_{3\times 2}$ karena banyak kolom B tidak sama dengan banyak baris C ( tidak dapat dikalikan) $C_{3\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan) jadi banyak perkalian yang dapat dilakukan adalah 6 9.   Matriks $L=\left(\begin{matrix}a&b&c\\1&2&3\\d&e&f\end{matrix}\right)$, jika ...

Pecatur A, B, C dan D bertanding dalam suatu turnamen catur, Urutan pemain yang memperoleh nilai tertinggi sampai ke terendah adalah ...

  Pecatur A, B, C dan D bertanding dalam suatu turnamen catur. Setiap pemain saling bertemu satu kali. pada setiap pertandingan, pemain yang menang, seri dan kalah, berturut-turut mendapatkan nilai 2, 1, dan 0. Data hasil pertandingan adalah A menang 2 kali, B seri dua kali, C kalah dua kali, dan D tidak pernah seri. Pembahasan; dari tabel setiap pecatur bertanding sebanyak tiga kali; seperti A dengan B, A dengan C dan A dengan D.  *B dua kali seri pastinya B  seri ketika melawan A dan melawan C (karena D tidak pernah seri),  * A menang 2 kali pastinya A menang melawan C dan melawan D ( karena A melawan B seri) *  kalah 2 kali pastinya C kalah melawan A dan melawan D (karena C seri melawan B) B dan D belum ditentukan menang atau kalah nya.   Pertandingan     Menang     seri     kalah                 A dan B         -   B/A     - ...