Skip to main content

JIka $g(P-2)=\frac{p-4}{p+2}$ dan $f(p)=p^2 +3$, maka$(fog^{-1})(2)=$ …

9.       JIka $g(P-2)=\frac{p-4}{p+2}$ dan $f(p)=p^2 +3$, maka$(fog^{-1})(2)=$ …
            A.      103
            B.      104
            C.      130
            D.      134
            E.       143
MATDAS 2014/ 12

Materi yang perlu kita ingat.
_____________________________________________________________________ 
Jika $f(p)=\frac{ap+b}{cp+d}$ maka $f^{-1} (p) = \frac{-dp +d}{cp - a}=\frac{dp=b}{-cp+a}$
_____________________________________________________________________

$g(p-2)=\frac{p-4}{p+2}$, agar $g(p-2)$ menjadi $g(p)$ maka $p$ pada $g(p-2)$ diganti menjadi $p+2$, sehingga
$g((p+2)-2)=\frac{(p+2)-4}{(p+2)+2}$ atau $g(p)=\frac{p-2}{p+4}$
$g^{-1} (p)=\frac{4p+2}{-p+1}$ , sesuai dengan point a.
$g^{-1} (2)=\frac{4(2)+2}{-2+1}=-10$
pada persoalan $(fog^{-1})(2)=f(g^{-1}(2))$, karena $g^{-1} (2)=-10$ maka $(fog^{-1})(2)=f(-10)$
$f(-10)$ artinya, setiap nilai p pada $f(p)$ dapat diganti dengan $-10$, sehingga
$f(-10)=(-10)^2 +3$
$f(-10)=100+3= 103$
Jadi $(fog^{-1})(2)=103$

PEMBAHASAN SOAL SBMPTN FUNGSI KOMPOSISI DAN INVERS TAHUN 2014

Comments

Popular posts from this blog

Pecatur A, B, C dan D bertanding dalam suatu turnamen catur, Urutan pemain yang memperoleh nilai tertinggi sampai ke terendah adalah ...

  Pecatur A, B, C dan D bertanding dalam suatu turnamen catur. Setiap pemain saling bertemu satu kali. pada setiap pertandingan, pemain yang menang, seri dan kalah, berturut-turut mendapatkan nilai 2, 1, dan 0. Data hasil pertandingan adalah A menang 2 kali, B seri dua kali, C kalah dua kali, dan D tidak pernah seri. Pembahasan; dari tabel setiap pecatur bertanding sebanyak tiga kali; seperti A dengan B, A dengan C dan A dengan D.  *B dua kali seri pastinya B  seri ketika melawan A dan melawan C (karena D tidak pernah seri),  * A menang 2 kali pastinya A menang melawan C dan melawan D ( karena A melawan B seri) *  kalah 2 kali pastinya C kalah melawan A dan melawan D (karena C seri melawan B) B dan D belum ditentukan menang atau kalah nya.   Pertandingan     Menang     seri     kalah                 A dan B         -   B/A     -      A dan C        A    -   C      A dan D       A    -     D      B dan C        -   B/C     -      B dan D      B/D    -   B/D    ?      C dan D        D

SOAL AKM TRANSFORMASI MATRIKS

 1.   Tata mendapatkan tugas dari Yuliana untuk menentukan besaran translasi yang dilakukannya jika posisi awalnya dititik $(4,2)$ dan posisi akhirnya$(-1,-2)$  berapakah besaran translasinya? Jawab; Pososi Akhir = posisi awal + besaran translasi $\left(\begin{matrix}-1\\-2\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ $4+a=-1$ maka $a=-1-4=-5$ $2+b=-2$ maka $b=-2-2=-4$ jadi besaran translasinya $(-5,-4)$ 2.   Persamaan parabola $y=2x^2+6$ ditranslasikan oleh matriks $\left(\begin{matrix}1\\3\end{matrix}\right)$ akan mempunyai bayangan parabola dengan titik puncak …. Jawab; $\left(\begin{matrix}x'\\y'\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}1\\3\end{matrix}\right)$ $x+1=x'$ maka $x=x'-1$ .....(1) $y+3=y'$ maka $y=y'-3$ ....(2) substitusi (1) dan (2) ke $y=2^2+6$ menjadi $y'-3=2(x'-1)^2+6$ $y'-3=2(x'^2-2x'+1)+6$ $y'-3=2x'^2-4x'

SOAL AKM MATRIKS

  7.   Jawab; a. BENAR B. Salah (seharusnya sama dengan g bukan h) C. Salah (seharusnya kotak silang bukan kotak dua) D. Salah E.  Salah 8.   Jawab; $A_{2\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan)  $B_{2\times 2} \times A_{2\times 2}$ karena banyak kolom B sama dengan banyak baris A (dapat dikalikan) $A_{2\times 2} \times C_{3\times 2}$ karena banyak kolom A tidak sama dengan banyak baris C (tida dapat dikalikan) $C_{3\times 2} \times A_{2\times 2}$ karena banyak kolom C sama dengan banyak baris A (dapat dikalikan) $B_{2\times 2} \times C_{3\times 2}$ karena banyak kolom B tidak sama dengan banyak baris C ( tidak dapat dikalikan) $C_{3\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan) jadi banyak perkalian yang dapat dilakukan adalah 6 9.   Matriks $L=\left(\begin{matrix}a&b&c\\1&2&3\\d&e&f\end{matrix}\right)$, jika $L^T$ merupakan transpose dari matriks L, ma