Skip to main content

MENYAJIKAN DATA: HISTOGRAM, POLIGON, OGIVE

bimbelkici.blogspot.com

A.  HISTOGRAM DAN POLIGON

       Data yang sudah terkumpul, selanjutnya disajikan dalam bentuk yang lebih mudah dibaca orang,  diantaranya dalam bentuk histogram. Histogram mirip dengan diagram batang, masing-masing  batangnya saling menyatu, sedangkan polygon merupakan garis yang menghubungkan titik tengah dengan frekuensinya.

      Langkah membuat histogram yaitu;
      a.       Tentukan Tepi bawah dan tepi atas masing-masing kelas, 
      b     Gambar pada diagram kartesius dengan skala yang benar.

       Seperti tabel berikut
bimbelkici.blogspot.com

          Garis merah merupakan poligon dan batang yang berdempet disebut dengan histogram.

B.  OGIVE

     Ogive adalah grafik yang digambar menggunakan  frekuensi kumulatif dan tepi bawah atau tepi atas. Ogive dibagi menjadi dua yaitu ogive positif dan ogive negatif.  ogive positif merupakan dibentuk menggunakan frekuensi kumulatif kurang dari dan tepi atas kelas, sedangkan ogive negatif menggunakan frekuensi kumulatif lebih dari dan tepi bawah kelas.

Apa itu frekuensi kumulatif?
frekuensi kumulatif adalah jumlah dari frekuensi. seperti pada tabel berikut ini.




Latihan

1.   Sajikanlah data yang sudah dipindahkan ke tabel distribusi frekuensi pada latihan 1 dalam bentuk
       a.   Histogram
       b.  Poligon
       c.  Ogive positif (+)
       d.  Ogive negative (-)


Comments

Popular posts from this blog

Pecatur A, B, C dan D bertanding dalam suatu turnamen catur, Urutan pemain yang memperoleh nilai tertinggi sampai ke terendah adalah ...

  Pecatur A, B, C dan D bertanding dalam suatu turnamen catur. Setiap pemain saling bertemu satu kali. pada setiap pertandingan, pemain yang menang, seri dan kalah, berturut-turut mendapatkan nilai 2, 1, dan 0. Data hasil pertandingan adalah A menang 2 kali, B seri dua kali, C kalah dua kali, dan D tidak pernah seri. Pembahasan; dari tabel setiap pecatur bertanding sebanyak tiga kali; seperti A dengan B, A dengan C dan A dengan D.  *B dua kali seri pastinya B  seri ketika melawan A dan melawan C (karena D tidak pernah seri),  * A menang 2 kali pastinya A menang melawan C dan melawan D ( karena A melawan B seri) *  kalah 2 kali pastinya C kalah melawan A dan melawan D (karena C seri melawan B) B dan D belum ditentukan menang atau kalah nya.   Pertandingan     Menang     seri     kalah                 A dan B         -   B/A     -      A dan C        A    -   C      A dan D       A    -     D      B dan C        -   B/C     -      B dan D      B/D    -   B/D    ?      C dan D        D

SOAL AKM TRANSFORMASI MATRIKS

 1.   Tata mendapatkan tugas dari Yuliana untuk menentukan besaran translasi yang dilakukannya jika posisi awalnya dititik $(4,2)$ dan posisi akhirnya$(-1,-2)$  berapakah besaran translasinya? Jawab; Pososi Akhir = posisi awal + besaran translasi $\left(\begin{matrix}-1\\-2\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ $4+a=-1$ maka $a=-1-4=-5$ $2+b=-2$ maka $b=-2-2=-4$ jadi besaran translasinya $(-5,-4)$ 2.   Persamaan parabola $y=2x^2+6$ ditranslasikan oleh matriks $\left(\begin{matrix}1\\3\end{matrix}\right)$ akan mempunyai bayangan parabola dengan titik puncak …. Jawab; $\left(\begin{matrix}x'\\y'\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}1\\3\end{matrix}\right)$ $x+1=x'$ maka $x=x'-1$ .....(1) $y+3=y'$ maka $y=y'-3$ ....(2) substitusi (1) dan (2) ke $y=2^2+6$ menjadi $y'-3=2(x'-1)^2+6$ $y'-3=2(x'^2-2x'+1)+6$ $y'-3=2x'^2-4x'

SOAL AKM MATRIKS

  7.   Jawab; a. BENAR B. Salah (seharusnya sama dengan g bukan h) C. Salah (seharusnya kotak silang bukan kotak dua) D. Salah E.  Salah 8.   Jawab; $A_{2\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan)  $B_{2\times 2} \times A_{2\times 2}$ karena banyak kolom B sama dengan banyak baris A (dapat dikalikan) $A_{2\times 2} \times C_{3\times 2}$ karena banyak kolom A tidak sama dengan banyak baris C (tida dapat dikalikan) $C_{3\times 2} \times A_{2\times 2}$ karena banyak kolom C sama dengan banyak baris A (dapat dikalikan) $B_{2\times 2} \times C_{3\times 2}$ karena banyak kolom B tidak sama dengan banyak baris C ( tidak dapat dikalikan) $C_{3\times 2} \times B_{2\times 2}$ karena banyak kolom A sama dengan banyak baris B (dapat dikalikan) jadi banyak perkalian yang dapat dilakukan adalah 6 9.   Matriks $L=\left(\begin{matrix}a&b&c\\1&2&3\\d&e&f\end{matrix}\right)$, jika $L^T$ merupakan transpose dari matriks L, ma