Misalkan sebuah fungsi $y=f(x)$ ditranslasi oleh matriks $T=\left(\begin{matrix}a\\b\end{matrix}\right)$. Pada fungsi awal kita punya variabel $\left(\begin{matrix}x\\y\end{matrix}\right)$ dan setelah ditranslasi maka terbentuk sebuah bayangan $\left(\begin{matrix}x’\\y’’\end{matrix}\right)$ sehingga; $\left(\begin{matrix}x’\\y’\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}a\\b\end{matrix}\right)$ Atau kita tulis; $x’=x+a\to x=x’-a$ $y’=y+b\to y=y’-b$ Contoh 1: Persamaan garis $x+2y=3$ ditranslasi oleh matriks $T=\left(\begin{matrix}5\\3\end{matrix}\right)$ mempunyai persamaan bayangan berbentuk … Pembahasan: $\left(\begin{matrix}x’\\y’\end{matrix}\right)=\left(\begin{matrix}x\\y\end{matrix}\right)+\left(\begin{matrix}5\\3\end{matrix}\right)$ Sehingga; $x+5=x’$ $x+5-5=x’-5$ $x=x’-5$ ……………..(1) $y+3=y’$ $y+3-3=y’-3$ $y=y'-3$ ……………(2) Substitusi (1) dan (2) ke persamaan kurva/garis. $x+2y-3=0\to (
Belajar untuk berbagi