3. Tentukan nilai turunan pertama untuk masing-masing fungsi berikut berdasarkan ide limit dan nilai x yang ditentukan.
a. $f(x)=\sqrt{9x+1}$, untuk $x=7$
b. $g(x)=\sqrt{x^2-9}$, untuk $g(x)=4$
c. $h(x)=\frac{1}{\sqrt{2x^2+3}}$, untuk $x=3$
Jawab:
a. $f(x)=\sqrt{9x+1}$, untuk $x=7$
$f(x+\Delta x)=\sqrt{9(x+\Delta x)+1}$
$f'(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$
$f'(x)=\lim_{\Delta x\to0}\frac{(\sqrt{9(x+\Delta x)+1})-(\sqrt{9x+1})}{\Delta x}$ $\lim_{\Delta x\to0}\left[\frac{\sqrt{9(x+\Delta x)+1}-\sqrt{9x+1}}{\Delta x}\right]\left[\frac{\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1}}{\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1}}\right]$
$f'(x)=\lim_{\Delta x\to0}\frac{(9(x+\Delta x)+1)-(9x+1)}{\Delta x(\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1})}$
$f'(x)=\lim_{\Delta x\to0}\frac{(9x+9\Delta x)+1)-(9x+1)}{\Delta x(\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1})}$
$f'(x)=\lim_{\Delta x\to0}\frac{9\Delta x}{\Delta x(\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1})}$
$f'(x)=\lim_{\Delta x\to0}\frac{9}{\sqrt{9(x+\Delta x)+1}+\sqrt{9x+1}}$
$f'(x)=\frac{9}{\sqrt{9(x+0)+1}+\sqrt{9x+1}}$
$f'(x)=\frac{9}{\sqrt{9x+1}+\sqrt{9x+1}}$
$f'(x)=\frac{9}{2\sqrt{9x+1}}$
$f'(7)=\frac{9}{2\sqrt{9(7)+1}}$
$f'(7)=\frac{9}{2\sqrt{63+1}}$
$f'(7)=\frac{9}{2\sqrt{64}}$
$f'(7)=\frac{9}{2(8)}$
$f'(7)=\frac{9}{16}$
b. $g(x)=\sqrt{x^2-9}$, untuk $g(x)=4$
$g(x+\Delta x)=\sqrt{(x+\Delta x)^2-9}$
$g'(x)=\lim_{\Delta x\to0}\frac{g(x+\Delta x)-g(x)}{\Delta x}$
$g'(x)=\lim_{\Delta x\to0}\frac{\sqrt{(x+\Delta x)^2-9}-\sqrt{x^2-9}}{\Delta x}$
$g'(x)=\lim_{\Delta x\to0}\left[\frac{\sqrt{(x+\Delta x)^2-9}-\sqrt{x^2-9}}{\Delta x}\right]\left[\frac{\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9}}{\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9}}\right]$
$g'(x)=\lim_{\Delta x\to0}\frac{((x+\Delta x)^2-9)-(x^2-9)}{\Delta x(\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9})}$
$g'(x)=\lim_{\Delta x\to0}\frac{\left[(x^2+2x\Delta x+\Delta x)-9\right]-(x^2-9)}{\Delta x(\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9})}$
$g'(x)=\lim_{\Delta x\to0}\frac{2x\Delta x+\Delta x)}{\Delta x(\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9})}$
$g'=(x)=\lim_{\Delta x\to0}\frac{\Delta x(2x+1)}{\Delta x(\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9})}$
$g'(x)=\lim_{\Delta x\to0}\frac{(2x+1)}{\sqrt{(x+\Delta x)^2-9}+\sqrt{x^2-9}}$
$g'(x)=\frac{(2x+1)}{\sqrt{(x+0)^2-9}+\sqrt{x^2-9}}$
$g'(x)=\frac{(2x+1)}{\sqrt{x^2-9}+\sqrt{x^2-9}}$
$g'(x)=\frac{(2x+1)}{2\sqrt{x^2-9}}$
$g'(x)=\frac{(2x+1)}{2\sqrt{x^2-9}}$
karena $g(x)=4\to\sqrt{x^2-9}=4$, sehingga $x=\pm5$
$g'(x)=\frac{(2x+1)}{2\sqrt{x^2-9}}$
untuk $x=5$
$g'(5)=\frac{(2(5)+1)}{2(4)}$
$g'(5)=\frac{11}{8}$
untuk $x=-5$
$g'(-5)=\frac{(2(-5)+1)}{2(4)}$
$g'(-5)=\frac{-9)}{8}$
$h'(x)=\lim_{\Delta x\to0}\frac{\sqrt{2x^2+3}-\sqrt{2(x+\Delta x)^2+3}}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}}$
$h'(x)=\lim_{\Delta x\to0}\left[\frac{\sqrt{2x^2+3}-\sqrt{2(x+\Delta x)^2+3}}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}}\right]\left[\frac{\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3}}{\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3}}\right]$
$h'(x)=\lim_{\Delta x\to0}\frac{(2x^2+3)-(2(x+\Delta x)^2+3)}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\lim_{\Delta x\to0}\frac{(2x^2+3)-(2(x^2+2x\Delta x+(\Delta x)^2)+3)}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\lim_{\Delta x\to0}\frac{(2x^2+3)-(2x^2+4x\Delta x+2(\Delta x)^2+3)}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\lim_{\Delta x\to0}\frac{-4x\Delta x-2(\Delta x)^2}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\lim_{\Delta x\to0}\frac{\Delta x(-4x-2\Delta x)}{\Delta x\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\lim_{\Delta x\to0}\frac{-4x-2\Delta x}{\sqrt{2(x+\Delta x)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+\Delta x)^2+3})}$
$h'(x)=\frac{-4x-2(0)}{\sqrt{2(x+0)^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x+0)^2+3})}$
$h'(x)=\frac{-4x}{\sqrt{2x^2+3}\sqrt{2x^2+3}(\sqrt{2x^2+3}+\sqrt{2(x^2+3})}$
$h'(x)=\frac{-4x}{(2x^2+3)(2\sqrt{2x^2+3})}$
$h'(3)=\frac{-4(3)}{(2(3)^2+3)(2\sqrt{2(3)^2+3})}$
$h'(3)=\frac{-12}{(21)(2\sqrt{21})}$
$h'(3)=\frac{-12}{42\sqrt{21}}$
$h'(3)=\frac{-2}{7\sqrt{21}}$
$h'(3)=\frac{-2\sqrt{21}}{7(21)}$
$h'(3)=\frac{-2\sqrt{21}}{147}$
Soal Definisi Turunan Fungsi Aljabar #LKS 1 Hal 164 No.3 Karangan Sukino
Semoga bermanfaat..
Salam dari bimbelkici.com
Comments
Post a Comment