Contoh 4
Umur Erna, Erni, dan Ernu membentuk barisan aritmatika. Jumlah ketiga umur mereka adalah 45 tahun dan hasil kalinya 3315. tentukan umur ketiga orang tersebut.
Jawab;
Jumlah umur Erna, Erni dan Ernu = 45
Misalkan umur Erna = a - b
umur Erni = a
umur Ernu = a + b
Umur Erna + Umur Erni + Umur Ernu = (a - b) + (a) + (a + b) = 45
3a = 45
$a=\frac{45}{3}=15$
hasil kali umur Erna, Erni, ernu adalah 3315;
$(a-b)(a)(a+b)=3315$
$(15-b)(15)(15+b)=3315$
$(15-b)(15+b)=\frac{3315}{15}$
$(15-b)(15+b)=221$
$225-b^2=221$
$225-221=b^2$
$b^2=4$
$b=\sqrt{4}$
$b=\pm 2$
Jika $b =2$ maka
Umur Erna $= a -b=15-2=13$ tahun.
Umur Erni $= a=15$ tahun
Umur Ernu $=a+b=15+2=17$
Jika $b=-2$ maka
Umur Erna $=a-b=15-(-2)=17$ tahun
Umur Erni $=a=15$ tahun
Umur Ernu $=a+b=15+(-2)=13$ tahun.
umur Ernu = a + b
Umur Erna + Umur Erni + Umur Ernu = (a - b) + (a) + (a + b) = 45
3a = 45
$a=\frac{45}{3}=15$
hasil kali umur Erna, Erni, ernu adalah 3315;
$(a-b)(a)(a+b)=3315$
$(15-b)(15)(15+b)=3315$
$(15-b)(15+b)=\frac{3315}{15}$
$(15-b)(15+b)=221$
$225-b^2=221$
$225-221=b^2$
$b^2=4$
$b=\sqrt{4}$
$b=\pm 2$
Jika $b =2$ maka
Umur Erna $= a -b=15-2=13$ tahun.
Umur Erni $= a=15$ tahun
Umur Ernu $=a+b=15+2=17$
Jika $b=-2$ maka
Umur Erna $=a-b=15-(-2)=17$ tahun
Umur Erni $=a=15$ tahun
Umur Ernu $=a+b=15+(-2)=13$ tahun.
Latihan 4
1. Rara, Riri, Rere merupakan tiga bersaudara, umur mereka berbentuk barisan aritmatika. Rara anak yang pertama lahir, dan Rere merupakan anak terakhir. jumlah ketiga umur mereka adalah 33 tahun dan hasil kalinya 1155. Berapa umur Rere?
2. Balok yang rusuknya dibagi menjadi 3 bagian yang disebut dengan panjang, lebar dan tinggi, ukuran tersebut berbentuk barisan aritmatika. jumlah semua rusuknya 60, volumenya adalah 80. tentukan panjang diagoanal ruang balok tersebut. (Petunjuk: Diagonal ruang balok $=\sqrt{p^2+l^2+t^2}$).
Comments
Post a Comment