Kedua matriks dikatakan sama jika memiliki ordo yang sama dan entry yang seletak memiliki nilai yang sama. Contoh $\left(\begin{matrix}a&1\\3&b\end{matrix}\right)\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$, tentukan nilai dari $3a+b$.... Jawab; $\left(\begin{matrix}a&1\\3&b\end{matrix}\right)\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$ $\left(\begin{matrix}2a-1&a+5\\6-b&3+5b\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$ $\left(\begin{matrix}2a-4&a+7\\-b&10+5b\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$ Entry baris 1 kolom 1 $2a-4=0$ $2a=4$ $a=\frac{4}{2}=2$ Entry baris 2 kolom
Belajar untuk berbagi