Diketahui Matriks $A=\left(\begin{matrix}a&b&c\\d&e&f\\g&h&i\end{matrix}\right)$, invers dari matriks A adalah $A^{-1}=\frac{1}{|A|}. \text{Adj. A}$
Cara mencari Adj. A
1. Menentukan Minor masing-masing entry.
- Minor entry a (tutup sebaris dan sekolom dengan a)
$\text{Mi}_a=\left|\begin{matrix}e&f\\h&i\end{matrix}\right|=e\times i-f\times h$
- Minor entry b (tutup sebaris dan sekolom dengan b)
$\text{Mi}_b=\left|\begin{matrix}d&f\\g&i\end{matrix}\right|=d\times i-f\times g$
- Minor entry a (tutup sebaris dan sekolom dengan a)
$\text{Mi}_a=\left|\begin{matrix}e&f\\h&i\end{matrix}\right|=e\times i-f\times h$
- Minor entry b (tutup sebaris dan sekolom dengan b)
$\text{Mi}_b=\left|\begin{matrix}d&f\\g&i\end{matrix}\right|=d\times i-f\times g$
- Minor entry c
$\text{Mi}_c=\left|\begin{matrix}d&e\\g&h\end{matrix}\right|=d\times h-e\times g$
$\text{Mi}_c=\left|\begin{matrix}d&e\\g&h\end{matrix}\right|=d\times h-e\times g$
- Minor entry d
$\text{Mi}_d=\left|\begin{matrix}b&c\\h&i\end{matrix}\right|=b\times i-c\times h$
$\text{Mi}_d=\left|\begin{matrix}b&c\\h&i\end{matrix}\right|=b\times i-c\times h$
- Minor entry e
$\text{Mi}_e=\left|\begin{matrix}a&c\\g&i\end{matrix}\right|=a\times i-c\times g$
- Minor entry f
$\text{Mi}_f=\left|\begin{matrix}a&b\\g&h\end{matrix}\right|=a\times h-b\times g$
- Minor entry g
$\text{Mi}_g=\left|\begin{matrix}b&c\\e&f\end{matrix}\right|=b\times f-c\times e$
- Minor entry h
$\text{Mi}_h=\left|\begin{matrix}a&c\\d&f\end{matrix}\right|=a\times f-c\times d$
- Minor entry i
$\text{Mi}_i=\left|\begin{matrix}a&b\\d&e\end{matrix}\right|=a\times e-b\times d$
2. Menentukan kofaktor
$Kofaktor A=\left(\begin{matrix}\text{Mi}_a&-(\text{Mi}_b)&\text{Mi}_c\\-(\text{Mi}_d)&\text{Mi}_e&-(\text{Mi}_f)\\\text{Mi}_g&-(\text{Mi}_h)&\text{Mi}_i\end{matrix}\right)$
3. Menentukan Adjoin (Adj)
Adjoin merupakan matriks hasil dari transpose matriks kofaktor.
$\text{Adj}. A=\left(\begin{matrix}\text{Mi}_a&-(\text{Mi}_d)&\text{Mi}_g \\-(\text{Mi}_b&\text{Mi}_e&-(\text{Mi}_h)\\ \text{Mi}_c&-(\text{Mi}_f)&\text{Mi}_i\end{matrix}\right)$
Contoh
Diketahui matriks $A=\left(\begin{matrix}2&1&3\\-2&5&8\\7&3&1\end{matrix}\right)$, tentukan invers dari matriks A.
Jawab;
$\left(\begin{matrix}2&1&3\\-2&5&8\\7&3&1\end{matrix}\right)\begin{array}\text{2}&1\\-2&5\\7&3\end{array}$
Determinan matriks A
$|A|=(2\times 5\times 1+1\times 8\times 7+3\times (-2)\times3)-(1\times (-2)\times 1+2\times 8\times 3+3\times 5\times 7)$
$=(10+56-18)-(-2+48+105)$
$=(48)-(151)=-103$
Video Determinan Matriks A
Minor Matriks A
$\text{Minor Matriks A}=\left(\begin{matrix}5\times 1-8\times 3&(-2)\times1-8\times 7&(-2)\times 3-5\times 7\\1\times 1-3\times 3&2\times 1-3\times 7&2\times 3-1\times 7\\1\times 8-3\times 5&2\times 8-3\times (-2)&2\times 5-1\times (-2)\end{matrix}\right)$
$=\left(\begin{matrix}5-24&-2-56&-6-35\\1-9&2-21&6-7\\8-15&16+6&10+2\end{matrix}\right)$
$=\left(\begin{matrix}-19&-58&-41\\-8&-19&-1\\-7&22&12\end{matrix}\right)$
Video Menentukan Minor Matriks
Kofaktor Matriks A
$\text{Koofaktor Matriks A }=\left(\begin{matrix}-19&-(-58)&-41\\-(-8)&-19&-(-1)\\-7&-(22)&12\end{matrix}\right)$
$=\left(\begin{matrix}-19&58&41\\8&-19&1\\-7&-22&12\end{matrix}\right)$
Adjoin Matriks A
$\text{Adj. A }=\left(\begin{matrix}-19&8&-7\\58&-19&-22\\41&1&12\end{matrix}\right)$
Invers Matriks A
$A^{-1}=\frac{1}{103}\left(\begin{matrix}-19&8&-7\\58&-19&-22\\41&1&12\end{matrix}\right)$
$=\left(\begin{matrix}\frac{-19}{103}&\frac{8}{103}&\frac{-7}{103}\\\frac{58}{103}&\frac{-19}{103}&\frac{-22}{103}\\\frac{41}{103}&\frac{1}{103}&\frac{12}{103}\end{matrix}\right)$
Jadi invers dari matriks A yaitu $A^{-1}=\left(\begin{matrix}\frac{-19}{103}&\frac{8}{103}&\frac{-7}{103}\\\frac{58}{103}&\frac{-19}{103}&\frac{-22}{103}\\\frac{41}{103}&\frac{1}{103}&\frac{12}{103}\end{matrix}\right)$
Latihan
1. Diketahui matriks $B=\left(\begin{matrix}a&3&2\\-4&1&b\\c&5&6\end{matrix}\right)$, tentukan invers dari matriks B. (ganti a,b c dengan bilangan bulat).
Comments
Post a Comment