Kedua matriks dikatakan sama jika memiliki ordo yang sama dan entry yang seletak memiliki nilai yang sama.
Contoh
$\left(\begin{matrix}a&1\\3&b\end{matrix}\right)\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$, tentukan nilai dari $3a+b$....
Jawab;
$\left(\begin{matrix}a&1\\3&b\end{matrix}\right)\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$
$\left(\begin{matrix}2a-1&a+5\\6-b&3+5b\end{matrix}\right)+\left(\begin{matrix}-3&2\\-6&7\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$
$\left(\begin{matrix}2a-4&a+7\\-b&10+5b\end{matrix}\right)=\left(\begin{matrix}0&9\\-4&30\end{matrix}\right)$
Entry baris 1 kolom 1
$2a-4=0$
$2a=4$
$a=\frac{4}{2}=2$
Entry baris 2 kolom 1
$-b=-4$
$b=4$
Jadi nilai $3a+b=3(2)+4=6+4=10$
Latihan 1
1. $\left(\begin{matrix}2a&3\\b&4\end{matrix}\right)\left(\begin{matrix}1&2\\5&-1\end{matrix}\right)+\left(\begin{matrix}2&-3\\0&-6\end{matrix}\right)=\left(\begin{matrix}19&-2\\22&-6\end{matrix}\right)$, tentukan nilai dari $3a+b$
Contoh 2
Diketahui $\left(\begin{matrix}2a&2b\\a&b\end{matrix}\right)\left(\begin{matrix}1&4\\2&1\end{matrix}\right)=\left(\begin{matrix}16&20\\8&11\end{matrix}\right)$, tentukan nilai dari $2a+3b$....
Jawab;
$\left(\begin{matrix}2a&2b\\a&b\end{matrix}\right)\left(\begin{matrix}1&4\\2&1\end{matrix}\right)=\left(\begin{matrix}16&20\\8&11\end{matrix}\right)$
$\left(\begin{matrix}2a+4b&8a+2b\\a+2b&4a+b\end{matrix}\right)$
$2a+4b=16 |\times 4| 8a+16b=64$
$4a+ b=11 |\times 2| 8a+2b=22 $
____________ $-$
$14b=42$
$b=\frac{42}{14}=3$
Substitusi $b=3$ ke $4a+b=11$
$4a+3=11$
$4a=11-3$
$4a=8$
$a=\frac{8}{4}=2$
$2a+3b=2(2)+3(3)=4+9=13$
jadi nilai $2a+3b=13$
Latihan 2
1. Diketahui $\left(\begin{matrix}a&2\\4&3b\end{matrix}\right)\left(\begin{matrix}2&3a\\b&1\end{matrix}\right)=\left(\begin{matrix}12&77\\11&63\end{matrix}\right)$, tentukan nilai $2a-4b$....
2. Diketahui $\left(\begin{matrix}2a&-b\\-3a&2b\end{matrix}\right)\left(\begin{matrix}3&2\\-1&-4\end{matrix}\right)=\left(\begin{matrix}27&28\\-18&-48\end{matrix}\right)$, tentukan nilai $2a-b$....
Comments
Post a Comment